読者です 読者をやめる 読者になる 読者になる

StatModeling Memorandum

StanとRでベイズ統計モデリングします. たまに書評.

GPy(Pythonのガウス過程用ライブラリ)の使い方

概要 GPyを用いて、サンプルパスの生成、ガウス過程回帰、クラス分類、ポアソン回帰、Bayesian GPLVMを実行しました。自分用のメモです。 参考資料 [1] 公式ページ [2] 公式のチュートリアル [3] Gaussian Process Summer Schoolsの資料 理論的背景は上記の[…

Python(PyStan)で「StanとRでベイズ統計モデリング」の5.1節を実行する

StanのPythonバインディングであるPyStanが公開されて久しいですが、検索してもあんまり情報がヒットしません。ちょっと寂しいと思ったので、インストールやtraceplotの出力なども含めて、以下の本の5.1節「重回帰」の一部を実行してみました(ステマです)…

「Python機械学習プログラミング」 Sebastian Raschka(著), 株式会社クイープ(訳), 福島真太朗(監訳)

僕はベイズ統計モデリングをはじめる前(5年ほど前)までは主に機械学習をしていました。その頃は平易な成書はあまりなくて、サポートベクターマシンの理論の難しい本を読んだり、Weka本(当時はこれ)を読みながら実装していたことを思い出します。Pythonで…

PyMC3の計算でGPUを使っている気がしただけの話

たまには浮気させてください。PyMC3は内部でTheanoを使っており、自動微分(auto-diff)が計算可能でStanのサンプラーであるNUTSも実装済みです。またTheanoがGPUに対応しているため、これはMCMCの超高速化が簡単にできるのではッ!と試した記事になります。…