StatModeling Memorandum

StatModeling Memorandum

StanとRとPythonでベイズ統計モデリングします. たまに書評.

Python

『用量反応試験における患者の割り付けの深層強化学習による最適化』というタイトルで統計関連学会連合大会で発表しました

ありがたいことに統計関連学会連合大会の招待講演の依頼がありましたので喜んで引き受けました。たくさんの質問ありがとうございました。 発表資料を共有します。一言で言うと、臨床試験において各患者を各用量にどう割り付けるのが良いかを強化学習を用いて…

統計・機械学習・R・Pythonで用途別のオススメ書籍

比較的読みやすい本を中心に紹介します。今後は毎年このページを更新します。 微分積分 高校数学をきちんとやっておけばそんなに困ることないような。偏微分とテイラー展開は大学演習のような本でしっかりやっておきましょう。ラグランジュの未定乗数法のよ…

TensorFlowで統計モデリング

とある勉強会で「TensorFlowで統計モデリング」というタイトルで講義をしました。聴衆はPythonユーザが多く、データ量が大きい問題が多そうだったので、StanよりもTensorFlowで点推定するスキルを伸ばすとメリットが大きいだろうと思ってこのようなタイトル…

PythonのSymPyで変分ベイズの例題を理解する

この記事の続きです。 ここではPRMLの10.1.3項の一変数ガウス分布の例題(WikipediaのVariational_Bayesian_methodsのA basic exampleと同じ)をSymPyで解きます。すなわちデータが に従い*1、とが、 に従うという状況です。ここでデータ()が得られたとし…

『Pythonで体験するベイズ推論 ―PyMCによるMCMC入門―』の書評

特長 Pythonユーザが待ちに待ったPythonによるMCMC本ではないでしょうか。原著タイトルが『Bayesian Methods for Hackers』だけあって、プログラマ・エンジニア向きだと思います。数式はびっくりするほど出てこない代わりに、Pythonコードは非常にたくさんで…

GPy(Pythonのガウス過程用ライブラリ)の使い方

概要 GPyを用いて、サンプルパスの生成、ガウス過程回帰、クラス分類、ポアソン回帰、Bayesian GPLVMを実行しました。自分用のメモです。 参考資料 [1] 公式ページ [2] 公式のチュートリアル [3] Gaussian Process Summer Schoolsの資料 理論的背景は上記の[…

Python(PyStan)で「StanとRでベイズ統計モデリング」の5.1節を実行する

StanのPythonバインディングであるPyStanが公開されて久しいですが、検索してもあんまり情報がヒットしません。ちょっと寂しいと思ったので、インストールやtraceplotの出力なども含めて、以下の本の5.1節「重回帰」の一部を実行してみました(ステマです)…

「Python機械学習プログラミング」 Sebastian Raschka(著), 株式会社クイープ(訳), 福島真太朗(監訳)

僕はベイズ統計モデリングをはじめる前(5年ほど前)までは主に機械学習をしていました。その頃は平易な成書はあまりなくて、サポートベクターマシンの理論の難しい本を読んだり、Weka本(当時はこれ)を読みながら実装していたことを思い出します。Pythonで…