StatModeling Memorandum

StatModeling Memorandum

StanとRとPythonでベイズ統計モデリングします. たまに書評.

『ベイズ統計モデリング ―R,JAGS, Stanによるチュートリアル 原著第2版―』 John Kruschke著、前田和寛・小杉考司監訳

タイトルの本を頂きました。ありがとうございます。僕は原著を少し読んだことがあり、こちらで非常に評判が高い本です。翻訳にもかかわらず原著とほぼ同じ値段で購入できます。 先にJAGSになじみのない方へ説明しておきますと、JAGSはRコアメンバーの一人で…

Osaka.Stan#5で「MCMCサンプルの使い方 ~見る・決める・探す・発生させる~」というタイトルで話しました

先日、以下のイベントで話しました。 『StanとRでベイズ統計モデリング』読書会(Osaka.Stan#5) : ATND 発表資料は以下です。 MCMCサンプルの使い方 ~見る・決める・探す・発生させる~ from Kentaro Matsuura 理論的には事後分布や予測分布の使い方というの…

しょラーさんのブログ記事「StanでAizu Online Judgeの難易度・習熟度を推定したい」の追加解析

背景やデータはしょラーさんの以下のブログ記事を読んでください。 kujira16.hateblo.jp この記事ではAOJ-ICPCで付加された貴重な難易度の情報をフル活用して、問題の真の難易度の推定と、各ユーザの習熟度の推定を行います。 この問題の難しさは「解いてい…

スパースモデルではshrinkage factorの分布を考慮しよう ~馬蹄事前分布(horseshoe prior)の紹介~

ベイズ統計の枠組みにおいて、回帰係数の事前分布に二重指数分布(ラプラス分布)を設定し回帰を実行してMAP推定値を求めると、lassoに対応した結果になります。また、回帰係数にt分布を設定する手法もあります。これらの手法は「shrinkage factorの分布」と…

『Pythonで体験するベイズ推論 ―PyMCによるMCMC入門―』の書評

特長 Pythonユーザが待ちに待ったPythonによるMCMC本ではないでしょうか。原著タイトルが『Bayesian Methods for Hackers』だけあって、プログラマ・エンジニア向きだと思います。数式はびっくりするほど出てこない代わりに、Pythonコードは非常にたくさんで…

{Rcpp}と{RcppGSL}を活用した数値積分の例

R

GSLはGNU Scientific Libraryの略で, 広い用途の数値計算向けのC言語のライブラリです。20年前から開発されており、まだリリースされ続けています。個人的な印象としては、めちゃくちゃチューニングされてはいないが、長年の開発のおかげで安定しており、マ…

MCMCサンプルを{dplyr}で操る

R

RからStanやJAGSを実行して得られるMCMCサンプルは、一般的に iterationの数×chainの数×パラメータの次元 のようなオブジェクトとなっており、凝った操作をしようとするとかなりややこしいです。 『StanとRでベイズ統計モデリング (Wonderful R)』のなかでは…

2次元以上のスポット検出を行う統計モデル

1次元の場合の変化点検出は以下の記事で扱いました。 状態空間モデルでシステムノイズに非ガウス分布(1次元の変化点検出) - StatModeling Memorandum 二つの時系列データの間に「差」があるか判断するには - StatModeling Memorandum 変化点検出のポイント…

統計・R・Stan関連の本、用途別のオススメ10冊

年末年始向けに、比較的読みやすい本を中心にオススメします。 統計学入門 色々読んでみましたが、現在決定版と言えるものは存在しないように思えました。個人的には、シグマと積分の復習、場合の数・数え上げの方法、確率、確率変数、確率密度、度数分布と…

情報量規準LOOCVとWAICの比較

この記事はStan Advent Calendar 2016およびR Advent Calendar 2016の12月7日の記事です。StanコードとRコードは記事の最後にあります。 背景は以下です。 [1] Aki Vehtari, Andrew Gelman, Jonah Gabry (2015). Practical Bayesian model evaluation using …

GPy(Pythonのガウス過程用ライブラリ)の使い方

概要 GPyを用いて、サンプルパスの生成、ガウス過程回帰、クラス分類、ポアソン回帰、Bayesian GPLVMを実行しました。自分用のメモです。 参考資料 [1] 公式ページ [2] 公式のチュートリアル [3] Gaussian Process Summer Schoolsの資料 理論的背景は上記の[…

Bayesian GPLVMをStanで実装してみた

この記事の続きです。PRML下の12章に出てくるOil Flowのデータ(データ点1000個×特徴量12個)に対してBayesian GPLVMで2次元(または3次元)の潜在変数空間にマッピングして綺麗に分離されるか見てみます。 まずはPRMLにもあるように普通の主成分分析でやる…

条件付き独立と有向分離を用いた統計モデルの妥当性チェック

この記事では条件付き独立と有向分離を使い、作成したモデルが背景知識と齟齬がないかチェックする方法を紹介します。以下の本の4章と5.3.1項を参考にしています。 Modeling and Reasoning with Bayesian Networks 僕が持っているのは上の一版なのですが、新…

Python(PyStan)で「StanとRでベイズ統計モデリング」の5.1節を実行する

StanのPythonバインディングであるPyStanが公開されて久しいですが、検索してもあんまり情報がヒットしません。ちょっと寂しいと思ったので、インストールやtraceplotの出力なども含めて、以下の本の5.1節「重回帰」の一部を実行してみました(ステマです)…

ゲルマン先生の「役に立つ統計用語集」

この記事はゲルマン先生(Andrew Gelman)の許諾を得て、Handy statistical lexiconを日本語訳したものです。元記事の用語集は現在も更新中です。英語に抵抗がない人はぜひ元記事を読んで下さい。訳語に関しては親しみやすさを重視し、多くの日本人にあまり…

「StanとRでベイズ統計モデリング」松浦健太郎 という本を書きました

僕が筆者なので、この記事は書評ではなく紹介になります。まずこの本はRのシリーズの一冊にもかかわらずStanという統計モデリングのためのプログラミング言語の方がメインです。このようなわがままを許してくれた、ゆるいふところの深い石田先生と共立出版に…

データ解析で割安mobile PCを探す

この記事の続編です。一緒にやろうという人がなかなか現れないので、一人でたたき台を作りました。 目的 目的は機能の割にお得な割安mobile PCを探すことです。mobile PCの厳密な定義はないのですが、ここではディスプレイが12型~14型で重さが1kg前後としま…

「Python機械学習プログラミング」 Sebastian Raschka(著), 株式会社クイープ(訳), 福島真太朗(監訳)

僕はベイズ統計モデリングをはじめる前(5年ほど前)までは主に機械学習をしていました。その頃は平易な成書はあまりなくて、サポートベクターマシンの理論の難しい本を読んだり、Weka本(当時はこれ)を読みながら実装していたことを思い出します。Pythonで…

階層ベイズモデルとWAIC

この記事では階層ベイズモデルの場合のWAICとは何か、またその場合のWAICの高速な算出方法について書きます。 背景 以下の2つの資料を参照してください。[1]に二種類の実装が載っています。[2]に明快な理論的補足が載っています。 [1] 階層ベイズとWAIC (清…

拡散方程式の解と粒子数の時間変化

拡散現象は幅広く観測されます。この記事では拡散方程式の解と粒子数の時間変化のグラフを備忘録として残します。 拡散方程式は以下です。導出方法はWebにあふれているので検索してください。 ここでは経過時間、は位置を表す座標と経過時間で決まる確率分布…

underdispersion(過小分散)な場合のポアソン分布の代替

overdispersion(過分散)なポアソン分布は個体差&ポアソン分布で説明するのがシンプルで解釈しやすくて、個人的には好みです。ただ、個体差を考慮するモデルではunderdispersion(過小分散)の場合に対応できません。そのような場合には「ほぼ確定的な値が…

蟻本シリーズ 3 スライド最小値

今回は以下の問題を考えます。 長さNの数列x[1], x[2], ..., x[N]と数Kが与えられます。y[i] = min{x[i], x[i+1], ..., x[i+K-1]} (i = 1, ..., N-K+1)として定義される数列y[i]を計算しなさい。 この問題は両端キュー(デック, deque)を用いることで、なん…

蟻本シリーズ 2 ランダムウォーク

今回は以下のランダムウォークの問題を考えます。 I×Jの大きさのグリッドがあります。(1,1)からスタートして、1ターンに上下左右4マスのうち移動できる方向にそれぞれ確率p1,p2,p3,p4で移動します。いくつかのマスには石が置いてあり、通行不可能になってい…

蟻本シリーズ 1 ナップサック問題

「プログラミングコンテストチャレンジブック [第2版]」(通称:蟻本)という本がとてもよかったので、これから3回にわたって統計モデルを絡めた感謝の記事を書こうと思います。 プログラミングコンテストチャレンジブック [第2版] ?問題解決のアルゴリズム…

人口ピラミッドのAge Heapingを階層ベイズで補正する

1週間ぐらい前に以下のツイートがバズっていました。togetterのまとめはこちら。 インドネシアの人口ピラミッド、どうしてこうなったのか自分の年齢を気にしない文化なのか pic.twitter.com/yPcvUCkpD2— やなせ (@ynsitx) 2016年6月16日 このグラフのソース…

「はじめての統計データ分析」 豊田秀樹のメモ

あとがきと6章のあとにあるQ&Aの節が熱い思いに満ちていてオススメです。2.7節「論文・レポートでの報告文例」もユニークです。学生思いの教育者としての一面を垣間見た気がします。 あとがきに書いてあるように、たしかに初級向けの授業で伝統的な統計学と…

Michael Betancourt's Stan Lectureを開催しました

ドワンゴさんに会場提供していただき、2016/6/4にMichael Betancourt's Stan Lectureを開催しました。実はStanの勉強会というのはこれがはじめてではなく、約2年ほど前に催されていたBUGS/Stan勉強会がもととなっています。 また今回はニコ生で放送したので…

Report of Michael Betancourt's Stan Lecture

We are really happy to hold Michael Betancourt's Stan Lecture on June 4 at DWANGO. To tell the truth, this is not the first Stan meeting in Japan. Three BUGS/Stan meetings were held about 2 years ago. DWANGO is a very famous company for it…

StanとRでレプリカ交換MCMC(parallel tempering) を実行する

本記事は発展的な話題です。かつて@Med_KUさんのブログ記事「てさぐれ!!RStanもの」で出てきた例題は局所最適値(local minimum)が多くて、Stanで実行する際も初期値をかなりピシッと決めておかないとダメな例題でした。 しかし、モデルが高次元になってく…

Stanのマニュアル日本語訳プロジェクト

現在、有志でStan 2.9.0のマニュアルを翻訳しています。 https://github.com/stan-ja/stan-ja まったり進行ですが、すでに日本語訳も95ページほどとなっており、言語仕様や関数のリファレンスなどを除けば5~6割ぐらいに達していると思います。 翻訳の稼ぎ頭…